Frames in Hilbert C∗-modules and C∗-algebras

نویسندگان

  • MICHAEL FRANK
  • David R. Larson
چکیده

We present a general approach to a module frame theory in C∗algebras and Hilbert C∗-modules. The investigations rely on the ideas of geometric dilation to standard Hilbert C∗-modules over unital C∗-algebras that possess orthonormal Hilbert bases, of reconstruction of the frames by projections and by other bounded module operators with suitable ranges. We obtain frame representation and decomposition theorems, as well as similarity and equivalence results. Hilbert space frames and quasi-bases for conditional expectations of finite index on C∗-algebras appear as special cases. Using a canonical categorical equivalence of Hilbert C∗-modules over commutative C∗-algebras and (F)Hilbert bundles, the results are reinterpretated for frames in vector and (F)Hilbert bundles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras

In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

*-frames in Hilbert modules over pro-C*-algebras

‎In this paper‎, ‎by using the sequence of multipliers‎, ‎we introduce frames with algebraic bounds in Hilbert pro-$ C^* $-modules‎. ‎We investigate the relations between frames and $ ast $-frames‎. ‎Some properties of $ ast $-frames in Hilbert pro-$ C^* $-modules are studied‎. ‎Also‎, ‎we show that there exist two differences between $ ast $-frames in Hilbert pro-$ C^* $-modules and Hilbert $ ...

متن کامل

Frames in right ideals of $C^*$-algebras

we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.

متن کامل

The study on controlled g-frames and controlled fusion frames in Hilbert C*-modules

Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007